I In https://www.linkedin.com/in/kehuo

"Make the change that you want to see in the world."

I A https://kerr4huo.wixsite.com/kehuo

Professional Experience _____

| 🔤 kerr4huo@gmail.com

SpatialAI, Oculus

0765-586-1019

RESEARCH SCIENTIST

Supporting best-in-class product research and development with a focus on enhancing spatial perception in AR/VR environment

Positional Tracking, Oculus

SUMMER INTERN

- · Helping delivering an exceptional virtual reality experience by improving performance and quality of our core tech software
- Supporting the development of Hardware and Software to enable better sensing of the user and his environment

Education

Beihang University (Beijing University of Aeronautics and Astronautics)

B.S. IN AEROSPACE ENGINEERING

University of Florida(UFL)

M.S. IN AEROSPACE ENGINEERING

Purdue Universitv

Ph.D. Student in Aerospace Engineering **Purdue University**

Ph.D. Student in Mechanical Engineering

Research Experience

DESIGN AND INTERACTIONS IN AUGMENTED REALITY

Human Robot Interaction in AR [C.11]

- A visual and spatial programming system for robot-IoT task authoring with AR
- · Investigating an ecosystem that coherently connects robot task planning, the human, robot and IoT

Instant Registration between SLAM based AR Systems [C.10]

- Instantly estimating relative 3D locations of two SLAM systems without sharing maps
- · Allowing users to quickly establish a collaborative AR environment to work with other persons or mobile robots

Spatially Mapping IoT Devices Within Augmented Scenes [C.8]

- Estimating the 3D locations of distributed smart things using a SLAM based AR device and UWB distance measurement units
- Developing a distance based localization algorithm based on Multidimensional Scaling (MDS)
- · Allowing users to rapidly map the smart things and perform spatial-aware interactions with them in AR scenes

A Mixed Reality Ready Modular Robotics System [C.7, c.5]

- Design of modular DIY robotics kit embedded with assembly awareness
- Multi-modal mixed-reality interactions enabling assembly and iteration guidance, and customization of complex tasks

3D Design Ideation Within Augmented Reality World [C.5]

- Dimensionally Consistent Design by re-purposing physical objects or use them as spatial reference
- Visually Coherent Design by referencing the physical world for texturing

EMBEDDED USER INTERFACE TECHNOLOGY

Gainesville, FL, US Sep. 2010 - Aug. 2012 West Lafayette, IN, US Sep. 2012 - Aug. 2013 West Lafayette, IN, US Sep. 2013 - Dec. 2018

Purdue

Accepted at DIS 2019

Published at UIST 2018

Published at CHI 2018

Purdue

Published at TFI 2018

Published at TEI 2017

Facebook Jan. 2019 -

Facebook

Beijing, China Sep. 2005 - Jul. 2009

May. 2018 - Aug. 2018

Customizable Soft Sensor [C.6 J.2]

- Real-time continuous contact sensing by performing Electrical impedance tomography (EIT) on a soft sensor
- A user friendly fabrication process with piezoresistive carbon-filled elastomer and a customization toolkit
- A hybrid machine-learning & heuristics approach to enable multi-modal sensing

Embedded 3D Input Using Magnetic Sensing Techniques [C.3, C.4, c.2]

- Method to achieve 3D position tracking between a magnatometer and a permanant magnet
- Self-contained 3D input device for mobile devices
- · Providing customizable UIs by attaching magnets to plain objects and enabling instant interactions

Finger Worn Fabrics with Multimodal Sensing [C.2, J.1, c.1]

- Single-layer smart textile capable of multimodal sensing to capture finger bending and pressing
- · Investigation on micro finger gestures for dynamic and eyes-free environments

ROBOTICS

Robotic Exploration and Mapping of Smart Indoor Environments

- A method to automatically explore and map a smart environment where UWB-IoT devices are distributed
- A navigation pipeline that drives a robot to a target globally and then refines the object localization locally for manipulations

Over-painting Circuits on Surfaces of 3D Objects[C.9, c.6]

- A workflow for common users to author functions to passive daily objects by attaching embedded electronics
- 4-DOF over-painting machine to draw conductive paths on object surfaces
- A design environment supporting users to customize functions, generate surface circuits, and interface with the painting machine

A Reconfigurable and Foldable Locomotive Robot [C.1]

- Design of a reconfigurable robot with foldable modules inspired by Origami
- · Kinematic and dynamic modeling, control algorithm development for a redundant actuation system

Dynamic and Non-linear Control of Electromagnetic Proximity Operation [T.1]

- Introducing electromagnetic force and torque into docking/assembly and proximity operations for spacecrafts
- Modeling and control of the non-linear and coupled system

Teaching Experience

Product and Process Design

LEADING TEACHING ASSISTANT & PROJECT COACH

- Opportunity determination through inspiration, ideation, and implementation using design thinking frameworks.
- Concept generation, product definition, prototyping and design verification.

Introduction to Mech. Engr. Design, Innovation, and Entrepreneurship

TEACHING ASSISTANT & LAB LECTURER Applying engineering principles to open-ended problems; Mathematically model and analyze engineering systems

Academic Service

Program Committee CSCW 2018 Poster

Review SIGCHI UIST 2018, ISWC 2018 TEI 2016-2018, SUI 2016, IDC 2017-2018, CSCW 2017, HRI 2018, ECIS 2018, NIME 2018 Review Other VRST 2016, IROS 2017, VR 2018, ECIS 2018, Euro-Haptics 2018 Volunteer UIST 2015

Technical Skills

Applied Machine Learning Linear Regression, K-Means, Gaussian Mixture Model, SVM, CNN(improving) Hardware Prototyping Embedded System, Wireless Communication, CAD/CAM, Hands-on Fabrication Application Prototyping NDK, Java, Unity, C/C++, Java, C#, MATLAB Computer Vision & Graphics OpenCV, Point Cloud Library, OpenGL, Interactive 3D Modeling Sensing Techniques Magnetic Sensing, Capacitive Sensing, IMU, Ultrasound/UWB based distance measuring User-Centered Design Elicitation Study, Qualitative and Quantitative Evaluation, Statistical Analysis

Published at TEI2016. UIST2016

Published at TEI2015, J. Pervasive Computing

Purdue, UFL

Submitted to ICRA 2019

Published at CHI2018, DIS2018

Published at IROS2014

Master Thesis

Purdue 2014, 2015, 2016 Spring

Purdue

2014 2015 Fall

Honors & Awards

Jun. 2018 Honorable Mention, ACM SIGCHI Conference on Designing Interactive Systems (DIS)
May. 2017 1st Place, Additive Manufacturing Hackthon from Dassault Systèmes
Nov. 2016 3rd Place, MIT-China Innovation and Entrepreneurship Forum Business Plan Competition
Sep. 2016 Finalist, Silicon Valley Innovation & Entrepreneurship Forum Business Plan Competition
Nov. 2015 1st Place, ACM User Interface Software and Technology Symposium Best Poster Award
May. 2011 Outstanding Achievement, University of Florida

Publications

THESIS & JOURNAL & MAJOR CONFERENCES (PEER-REVIEWED)

- T.1 K. Huo, "Dynamics and nonlinear control of electromagnetic docking/assembly and proximity operations", *University of Florida* M.S., Thesis, 2012.
- J.1 S. Yoon, **K. Huo**, and K. Ramani, "Wearable textile input device with multimodal sensing for eyes-free mobile interaction during daily activities", *Pervasive and Mobile Computing* 33, 17-31, 2016.
- J.2 S. Yoon, **K. Huo**, and K. Ramani, "MultiSoft: Soft Sensor Enabling Real-time Multimodal Sensing with Contact Localization and Deformation", *Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT)* Sep 18, 145, 2018.
- C.11 Y. Cao, K. Huo, Z. Xu, F. Li, W. Zhong, and K. Ramani, "V.Ra: An In-Situ Visual Authoring System for Robot-IoT Task Planning with Augmented Reality", *Proceedings of the 2019 DESIGNING INTERACTIVE SYSTEMS (DIS 2019)* (25% Acceptance Rate, , 2019.
- C.10 K. Huo, T. Wang, L. Paredes, A. Villanueva, and K. Ramani, "SynchronizAR: Instant Synchronization for Spontaneous and Spatial Collaborations in Augmented Reality", *Proceedings of the 31st Annual Symposium on User Interface Software and Technology* (*UIST 2018*) (22.5% Acceptance Rate), , 2018.
- C.9 T. Wang, K. Huo, et al., and K. Ramani, "Plane2Fun: Augmenting Ordinary Objects with Interactive Functions by Auto-Fabricating Surface Painted Circuits", *Proceedings of the 2018 DESIGNING INTERACTIVE SYSTEMS (DIS 2018)* (25% Acceptance Rate), Honorable Mention, p. 1095, 2018.
- C.8 K. Huo, Y. Cao, S. Yoon, Z. Xu, G. Chen, K. Ramani, "Scenariot: Spatially Mapping Smart Things Within Augmented Reality Scenes", Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI 2018) (~ 25% Acceptance Rate), Paper 219, 2018.
- C.7 Y. Cao, Z. Xu, T. Glenn, K. Huo, K. Ramani, "Ani-Bot: A Mixed-Reality Modular Robotics System", Proceedings of the 12th International Conference on Tangible, Embedded, and Embodied Interaction (TEI 2018) (28% Acceptance Rate), , 2018.
- C.6 S. Yoon, K. Huo, Y. Zhang, G. Chen, L. Paredes, and K. Ramani, "iSoft: A Customizable Soft Sensor with Real-time Continuous Contact and Stretching Sensing", *Proceedings of the 30th Annual Symposium on User Interface Software and Technology (UIST 2017)* (22.5% Acceptance Rate), 665-678, 2017.
- C.5 K. Huo, Vinayak, K. Ramani, "Window-Shaping: 3D Design Ideation by Creating on, Borrowing from, and Looking at the Physical World.", Proceedings of the 11th International Conference on Tangible, Embedded, and Embodied Interaction (TEI 2017) (27% Acceptance Rate), 189-189, 2017.
- C.4 S. Yoon, Y. Zhang, K. Huo, and K. Ramani, "TRing: Instant and Customizable Interactions with Objects Using an Embedded Magnet and a Finger-Worn Device", *Proceedings of the 29th Annual Symposium on User Interface Software and Technology (UIST 2016)* (20.6% Acceptance Rate), 169-181, 2016.
- C.3 S. Yoon, **K. Huo**, and K. Ramani, "TMotion: Embedded 3D mobile input using magnetic sensing technique", *Proceedings of the* 10th International Conference on Tangible, Embedded, and Embodied Interaction (**TEI 2016**) (**25%** Acceptance Rate), 21-29, 2016.
- C.2 S. Yoon, K. Huo, V. Nguyen and K. Ramani, "TIMMi: Finger-worn Textile Input Device with Multimodal Sensing in Mobile Interaction", *Proceedings of the 9th International Conference on Tangible, Embedded, and Embodied Interaction (TEI 2015)* (28% Acceptance Rate, 269-272, 2015.
- C.1 W. Gao, **K. Huo**, J. Seehra, and K. Ramani, "Hexamorph: A reconfigurable and foldable hexapod robot inspired by origami", *Intelligent Robots and Systems (IROS 2014)* (**46%** Acceptance Rate), 4598–4604, 2014.

MAGAZINE & EXTENDED ABSTRACT IN ADJUNCT PROCEEDINGS

Hong Kong, China Chicago, U.S.A Boston, U.S.A San Francisco, U.S.A Charlotte, U.S.A Florida, U.S.A

- m.3 S. Yoon, G. Chen, K. Huo, Y. Zhang, K. Ramani, "iSoft", interactions 25, 14-15, 2018.
- m.2 P. Shorey, et al., Sang Yoon, Yunbo Zhang, Ke Huo, Karthik Ramani, "Demo Hour", interactions 24, 11-12, 2017.
- m.1 G. Ronchi, C. Benghi, F. Erich, M. Jazbec, A. Chacin, T. Oozu, S. Yoon, K. Huo, K. Ramani, "Demo Hour", *interactions* 23, 8-11, 2016.
- c.6 T. Wang, K. Huo, et al, K. Ramani, "Plain2Fun: Augmenting Ordinary Objects with Surface Painted Circuits", *Adjunct Proceedings* of the CHI 2018, to appear, 2018.
- c.5 Y. Cao, Z. Xu, T. Glenn, K. Huo, K. Ramani, "Ani-Bot: A Mixed-Reality Modular Robotics System", *Adjunct Proceedings of the 31th Annual Symposium on User Interface Software and Technology*, 119-121, 2017.
- c.4 K. Huo, "Exploring Advanced Interactions for Augmented Reality: From Casual Activities to In-Situ 3D Modeling", *Proceedings of the 11th International Conference on Tangible, Embedded, and Embodied Interaction*, 725-728, 2017.
- c.3 K. Huo, Vinayak, K. Ramani, "Window-Shaping: 3D Design Ideation in Mixed Reality", *Proceedings of the 2016 Symposium on Spatial User Interaction*, 189-189, 2016.
- c.2 S. Yoon, K. Huo, and K. Ramani, "TMotion: Embedded 3D mobile input using magnetic sensing technique", *Adjunct Proceedings* of the 29th Annual Symposium on User Interface Software and Technology, 71–72, 2015.
- c.1 S. Yoon, K. Huo, and K. Ramani, "Plex: finger-worn textile sensor for mobile interaction during activities", *Proceedings of the 2014* ACM International Joint Conference on Pervasive and Ubiquitous Computing, 191-194, 2014.